
Side-Channel Vulnerabilities in
Networking and AI Systems

Sihang Liu

University of Waterloo

Oct 28, 2025

Explosion of Cloud and AI

● Cloud is foundational in today’s computing
○ Scalable compute and storage

○ Elastic resource allocation

● Networking is especially critical to the cloud
○ Achieve high-speed interconnect

● AI workloads are usually deployed in the cloud, e.g.,
○ Large language models for chatbot and code generation
○ Diffusion models for creative image/video generation

2

New Security Concerns

● Sharing is common in cloud environments

● Resource sharing introduces new security risks, e.g.,
○ Network interconnect
○ Generative AI models
○ Compute and storage systems

● Virtualization and isolation can mitigate leakages but not always

3

What Are Side-Channel Attacks​?

● Side channels are based on indirect, unintended behaviors or features​

● Secretly leak information about the target system​

● Examples of side channels:
○ Chip power
○ Thermal signal​

○ Electromagnetic signal​
○ Timing difference​

4

Cache is one of the most typical examples that lead to timing differences

Example of Cache Side Channel

Attacker primes
a target set

No victim
access

Victim
accesses

the set

Attacker
probes
the set

Attacker detects
high latency

Attacker detects
low latency

5

A Prime+Probe attack can infer bits of a memory address through cache

Outline

● Background

● Side-channel Study I: Open vSwitch
○ Remote packet header recovery attack
○ Remote packet rate monitoring attack

● Side-channel Study II: Prompt caching of image generation
○ Remote covert channel
○ Prompt stealing attack

6

Case Study I

Side Channels in Open vSwitch

7

Open vSwitch (OVS)

● Cloud environments usually share resources via VMs

● OVS is one way to accelerate the network in cloud environment

○ It is a virtual switch that connects VMs or containers

○ Works with SDN and enables efficient and flexible network management

VM VM

OVS

VM VM

OVS

Cloud Server Cloud Server

Network 8

Flow Caching in OVS

Microflow Cache

Megaflow Cache

OpenFlow Tables

Miss Insert upon miss

Miss

Hit

Incoming
Packet

Execute
Actions

Hit Insert upon
miss

● OVS caches network flows to accelerate flow actions

● It has a two-level cache: microflow cache and megaflow cache
○ The incoming packet first looks up microflow cache​
○ If hit, execute actions
○ If miss, look up megaflow cache and insert flow back to microflow

9

Microflow Cache

10

● Microflow cache is based on a

hash table

● Lookup process:
1. Generate hash from packet header
2. Look up the microflow cache using

the hash value
○ Hit: Use the cached flow entry
○ Miss: Replace the conflict entry

Hash function

Hash value

Microflow

Cache

Look up /
Replace if miss

Src IP Dst IP Src port Dst port Protocol

Microflow Cache Latency

11

OVS microflow and megaflow have distinguishable latencies

F
re

q
u

e
n

c
y
 (

%
)

Round Trip Time (µs)

80

60

40

20

0

240 260 280 300 320

Microflow

Megaflow

270µs 277µs

Megaflow Cache

12

● Megaflow cache consists of a number of subtables
○ Look up subtables sequentially until hit

○ Latency depends on num. subtable lookups
○ Subtables are reordered to the front if accessed frequently

Subtable

1

Subtable

2

Subtable

N…Packet

Execute Action

Miss Hit Skipped

Subtable

3

Miss

Reorder

Megaflow Cache Latency

13

● Evaluate access latency vs. subtable location

Megaflow has distinguishable levels of latencies, corresponding to subtables order

Subtable Num.

300

290

280

270

260
1 2 5 8 14 21 31

Summary of OVS Attack Primitives

1.Timing difference in OVS

○ Microflow, megaflow, and cache miss have distinguishable latencies

2.Microflow cache hash collisions

○ The hash for the microflow cache is generated from packet header fields

○ Collisions can leak information about packet header fields

3.Megaflow subtable ordering

○ The megaflow subtable ordering is based on access frequency

○ Subtable latency can leak traffic rate

14

Attack Model

● Assume a cloud environment
○ Attacker and victim have no direct co-location

○ Attacker may access services co-located with the victim’s server,
but are isolated by VMs

● Only OVS is shared

VM VM

OVS

ServiceAttacker Victim

VM Isolation

Remote Access Shared OVS

15

Remote Packet Header Recovery Attack

VM VM

OVS

Microflow

ServiceAttacker Victim

● Attacker knows victim is accessing some well-known service
○ Victim’s Dst IP, port, and protocol are known

● Infer victim’s remaining header fields
○ Victim’s Src IP and port are targets

● Use Attack Primitives 1 & 2 to detect microflow collisions

Known
Service

16

Known dst IP, port,
and protocolInfer src IP and port

Remote Packet Header Recovery Attack

User
accessing
network

Probe microflow to
detect evictions

Compute all hash
combinations of
Src IP and port

Find possible
combinations that
match evictions

Src IP Dst IP Src port Dst port Protocol

Eviction hash Computed Hash
?

17

Recovery Accuracy and Time

● Measurement repetition increases recovery accuracy

● Probing time increases as attacker repeats probing

18

Attack Time Accuracy

A
c
c
u
ra

c
y
 (

%
)

Measurement Repetition

0 50 100

800

600

400

200

100

50

0

A
tt
a

c
k
 T

im
e
 (

s
)

Packet header fields can be recovered by probing active entries in microflow cache

Remote Packet Rate Monitoring Attack

● Attacker has knowledge about victim’s packet header
○ Using packet header recovery attack

● Attacker can locate victim flow’s subtable and probe it

● Use Attack Primitive 3 to monitor victim’s packet rate

19

VM VM

OVS

Megaflow

ServiceAttacker Victim
Known
Service

Remote Packet Rate Monitoring Attack

Subtable

1

Subtable

2

Subtable

3

10 packets/s 8 packets/s

Subtable

5

6 packets/s

● Attacker measures latency to victim’s co-located subtable

● Attacker accesses certain subtables that work as “thresholds”
○ Send packets at fixed rates
○ Compare the victim’s subtable latency and determine the relative ordering

● Use neighboring thresholds to identify victim’s packet rate

Lower latency Higher latency

20

Recovery Accuracy

● Replay packets based on timestamps in UNSW-NB15

● Recovery of an example flow:

21

Attacker can monitor packet rate at 71.9% accuracy on average

Groundtruth Success (75%) Fail (25%)

5 15 2010

30

20

10

0

Time (s)

P
a
c
k
e

ts
 /
 s

Case Study II

Side Channels in Prompt Cache

22

Prompt Caching in Gen AI

● Gen AI models cache prompts for faster generation

● Examples of prompt caching:
○ Large Language Models can skip computation of identical

components in the prompt by reusing the cache
○ Text-to-Image Diffusion Models reuse the intermediate states of

cached prompts for similar prompts

This study focuses on caching in Text-to-Image Diffusion Models

23

Caching for Text-to-Image Diffusion Models

1 N2

Gaussian Noise

N20

Cache

Cache Hit

Reuse Cached State

20

A photorealistic detailed

squirrel stealing…

Prompt 1

Anthropomorphic acorn

criminal, sitting in a tree…

Prompt 2

20 steps skipped 24

Timing of Cached Generation

Miss Steps skipped 10%

20% 30% 40% 50%

F
re

q
u
e
n

c
y
 (

%
)

40

20

0

Latency (s)

4 6 8 10

● Model: FLUX

● Platform: H100 GPU

● Evaluate generation time with

different numbers of skipped steps

25

Caching reduces generation time, varying by the number of skipped steps

Similarity of Cached Generations

Original

Cache

Cached

Generation

F
re

q
u
e
n

c
y
 (

%
) 20

15

10

5

0

Similarity Score (SSIM)

0 0.2 0.4 0.8 1

Generated from Same Cache

26Images generated from the same cache are similar

1. Timing Differences
○ A cache hit results in a significantly lower generation latency

○ An attacker can remotely determine if their prompt hit the cache

2. Generation Similarity
○ Images generated from the same cache share high similarities

○ An attacker can analyze the output image to determine if their prompts hit
the same cache

Summary of Prompt Caching Attack Primitives

27

Attack Model

Attacker

Prompt

● The image generation service is hosted remotely in the cloud
○ It uses caching for acceleration

● Attackers can only access it remotely through generation prompts

Cache

Diffusion

Model

Remote
Image Generation Service

28

Remote Covert Channel

Sender Receiver

PromptsPrompts

Cache

Diffusion

Model

● A sender and a receiver communicate stealthily through the cache

● Approach
○ Sender: Inserts prompts with special words into the cache
○ Receiver: Probes the cache and checks if special words exist

Special

keywords

Special

keywords

Check Output
29

Remote Covert Channel Examples

Apricity Cacodemon Caltrop Crwth Fleam Gnomon

Keyword

Hit

Initial

Keyword

Keywords

30
Receiver uses an objective detection model to check the output

Sender’s prompts remain

cached for ~2 days

Covert Channel Accuracy

●Model: Flux

●Dataset: DiffusionDB

●Baseline: Using cache timing to detect

if the sender has injected a keyword

●Accuracy:
○ Cache timing only: 95%

○ Cache timing + content similarity: 98%

100

50

0

A
p
ri
c
it
y

C
a
c
o

d
e
m

o
n

C
a
lt
ro

p

C
rw

th

F
le

a
m

G
n

o
m

o
n

G
ri

m
o

ir
e

L
o

rg
n

e
tt

e

R
u
m

m
e

r

Z
a
rf

S
u
c
c
e

s
s
 R

a
te

 (
%

)

Cache Hit Timing Only

Timing and Content Similarity

31

Using both timing and content similarity attack primitives achieves
high covert channel accuracy

Prompt Stealing

● Infer user prompts in the cache through cache hits

● Attacker’s approach
○ Craft and probe the cache
○ Classify prompts that hit the same cache
○ Use a language model to recover the cached prompt

Probing Outputs Stolen Prompt

AttackerProbing Prompts

Cache

Diffusion

Model
User

Prompt

32

Prompt Stealing Example

Medieval knight in the forest, highly detailed body, knight in armor
made of wood, elden ring inspired, photo-realistic painting, digital
art, matte painting, from a classical oil painting …

Conceptual art of a medieval knight with angel wings in a forest at
night, realistic painting, classical painting, high definition, digital
art, matte painting, very detailed, realistic …

User’s Prompt:

Prompt semantic similarity: 0.85

Stolen Prompt:

33

Prompt Stealing Accuracy

● Model: Flux

● Dataset: DiffusionDB

● Baseline: Using timing to determine

hits, without classifying if prompts hit

the same cache

● Accuracy (semantic similarity):
○ Cache timing only: 0.67

○ Cache timing + content similarity: 0.75

F
re

q
u
e
n

c
y
 (

%
)

60

40

20

0

Semantic Similarity

0.6 0.8

Cache Hit Timing Only

Timing and Content Similarity

Attacker recovers prompt with high similarity
34

Summary

● The wide use of cloud and AI introduces a wider attack surface

● We demonstrate two cases of side-channel attacks
○ Open vSwitch can leak user data due to its caching mechanism
○ Prompt caching can allow attackers to steal user prompts and transmit

secret messages

● There is an urgent need for mitigating such leakages to ensure

trustworthy AI and cloud systems

● Our future direction aims to mitigate side-channel vulnerabilities

in cloud and AI applications

35

Side-Channel Vulnerabilities in
Networking and AI Systems

Sihang Liu

University of Waterloo

Oct 28, 2025

	Slide 1: Side-Channel Vulnerabilities in Networking and AI Systems
	Slide 2: Explosion of Cloud and AI
	Slide 3: New Security Concerns
	Slide 4: What Are Side-Channel Attacks​?
	Slide 5: Example of Cache Side Channel
	Slide 6: Outline
	Slide 7: Case Study I Side Channels in Open vSwitch
	Slide 8: Open vSwitch (OVS)
	Slide 9: Flow Caching in OVS
	Slide 10: Microflow Cache
	Slide 11: Microflow Cache Latency
	Slide 12: Megaflow Cache
	Slide 13: Megaflow Cache Latency
	Slide 14: Summary of OVS Attack Primitives
	Slide 15: Attack Model
	Slide 16: Remote Packet Header Recovery Attack
	Slide 17: Remote Packet Header Recovery Attack
	Slide 18: Recovery Accuracy and Time
	Slide 19: Remote Packet Rate Monitoring Attack
	Slide 20: Remote Packet Rate Monitoring Attack
	Slide 21: Recovery Accuracy
	Slide 22: Case Study II Side Channels in Prompt Cache
	Slide 23: Prompt Caching in Gen AI
	Slide 24: Caching for Text-to-Image Diffusion Models
	Slide 25: Timing of Cached Generation
	Slide 26: Similarity of Cached Generations
	Slide 27: Summary of Prompt Caching Attack Primitives
	Slide 28: Attack Model
	Slide 29: Remote Covert Channel
	Slide 30: Remote Covert Channel Examples
	Slide 31: Covert Channel Accuracy
	Slide 32: Prompt Stealing
	Slide 33: Prompt Stealing Example
	Slide 34: Prompt Stealing Accuracy
	Slide 35: Summary
	Slide 36: Side-Channel Vulnerabilities in Networking and AI Systems

