Side-Channel Vulnerabilities in
Networking and Al Systems

Sihang Liu

University of Waterloo

Oct 28, 2025
W UNIVERSITY OF
WATERLOO



Explosion of Cloud and Al

e Cloud is foundational in today’s computing
o Scalable compute and storage
o Elastic resource allocation

e Networking is especially critical to the cloud
o Achieve high-speed interconnect

e Al workloads are usually deployed in the cloud, e.g.,
o Large language models for chatbot and code generation
o Diffusion models for creative image/video generation
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New Security Concerns

e Sharing is common in cloud environments

e Resource sharing introduces new security risks, e.g.,
o Network interconnect
o Generative Al models
o Compute and storage systems

e Virtualization and isolation can mitigate leakages but not always



What Are Side-Channel Attacks?

e Side channels are based on indirect, unintended behaviors or features
e Secretly leak information about the target system

e Examples of side channels:
o Chip power
o Thermal signal
o Electromagnetic signal
o (Timing difference)

Cache is one of the most typical examples that lead to timing differences



Example of Cache Side Channel

A Prime+Probe attack can infer bits of a memory address through cache
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Outline

e Side-channel Study I: Open vSwitch
o Remote packet header recovery attack
o Remote packet rate monitoring attack
e Side-channel Study Il: Prompt caching of image generation

o Remote covert channel
o Prompt stealing attack



Case Study |
Side Channels in Open vSwitch



Open vSwitch (OVS) @VS

Open vSwitch

e Cloud environments usually share resources via VMs

e OVS is one way to accelerate the network in cloud environment
o It is a virtual switch that connects VMs or containers
o Works with SDN and enables efficient and flexible network management
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Flow Caching in OVS

e OVS caches network flows to accelerate flow actions

e It has a two-level cache: microflow cache and megaflow cache
o The incoming packet first looks up microflow cache
o If hit, execute actions
o If miss, look up megaflow cache and insert flow back to microflow
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Microflow Cache

e Microflow cache is based on a

Src IP Dst IP
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e Lookup process:
1. Generate hash from packet header
2. Look up the microflow cache using

the hash value
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Microflow Cache Latency

(@)
o

] Microflow
L] Megaflow

270us 277us

240 260 280 300 320
Round Trip Time (us)

(®))
o

N
o

Frequency (%)
N
o

o
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Megaflow Cache

e Megaflow cache consists of a number of subtables
o Look up subtables sequentially until hit
o Latency depends on num. subtable lookups
o Subtables are reordered to the front if accessed frequen
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Megaflow Cache Latency

e Evaluate access latency vs. subtable location
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Megaflow has distinguishable levels of latencies, corresponding to subtables order
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Summary of OVS Attack Primitives

1.Timing difference in OVS
o Microflow, megaflow, and cache miss have distinguishable latencies

2.Microflow cache hash collisions
o The hash for the microflow cache is generated from packet header fields
o Collisions can leak information about packet header fields

3.Megaflow subtable ordering
o The megaflow subtable ordering is based on access frequency
o Subtable latency can leak traffic rate
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Attack Model

e Assume a cloud environment
o Attacker and victim have no direct co-location

o Attacker may access services co-located with the victim’'s server,

but are isolated by VMs
e Only OVS is shared
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Remote Packet Header Recovery Attack

e Afttacker knows victim is accessing some well-known service

o Victim's Dst IP, port, and protocol are known

e |Infer victim’s remaining header fields

o Victim's Src IP and port are targets

e Use Attack Primitives 1 & 2 to detect microflow collisions
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Remote Packet Header Recovery Attack
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Recovery Accuracy and Time

e Measurement repetition increases recovery accuracy
e Probing time increases as attacker repeats probing
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Packet header fields can be recovered by probing active entries in microflow cache



Remote Packet Rate Monitoring Attack

e Attacker has knowledge about victim’s packet header
o Using packet header recovery attack

e Attacker can locate victim flow’s subtable and probe it
e Use Attack Primitive 3 to monitor victim’'s packet rate
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Remote Packet Rate Monitoring Attack

e Attacker measures latency to victim’'s co-located subtable

e Attacker accesses certain subtables that work as “thresholds”

o Send packets at fixed rates
o Compare the victim’s subtable latency and determine the relative ordering

e Use neighboring thresholds to identify victim’s packet rate
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Recovery Accuracy

e Replay packets based on timestamps in UNSW-NB15
e Recovery of an example flow:
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Attacker can monitor packet rate at 71.9% accuracy on average
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Case Study Il
Side Channels in Prompt Cache



Prompt Caching in Gen Al

e Gen Al models cache prompts for faster generation

e Examples of prompt caching:
o Large Language Models can skip computation of identical
components in the prompt by reusing the cache
o Text-to-lmage Diffusion Models reuse the intermediate states of
cached prompts for similar prompts

This study focuses on caching in Text-to-Image Diffusion Models
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Caching for Text-to-lmage Diffusion Models
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Timing of Cached Generation

e Model: FLUX
e Platform: H100 GPU Q
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Caching reduces generation time, varying by the number of skipped steps



Similarity of Cached Generations
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Summary of Prompt Caching Attack Primitives

1. Timing Differences
o A cache hit results in a significantly lower generation latency
o An attacker can remotely determine if their prompt hit the cache

2. Generation Similarity
o Images generated from the same cache share high similarities

o An attacker can analyze the output image to determine if their prompts hit
the same cache
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Attack Model

e The image generation service is hosted remotely in the cloud
o It uses caching for acceleration
e Attackers can only access it remotely through generation prompts
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Remote Covert Channel

e A sender and a receiver communicate stealthily through the cache

e Approach

o Sender: Inserts prompts with special words into the cache
o Receiver: Probes the cache and checks if special words exist
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Sender’s prompts remain

Remote Covert Channel Examples . ched for ~2 days
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Receiver uses an objective detection model to check the output



Covert Channel Accuracy

e Model: Flux I Cache Hit Timing Only./ -
e Dataset: DiffusionDB 1 Timing and Content Similarity

-
o
o

e Baseline: Using cache timing to detect
if the sender has injected a keyword

e Accuracy:
o Cache timing only: 95%
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Using both timing and content similarity attack primitives achieves
high covert channel accuracy



Prompt Stealing

e Infer user prompts in the cache through cache hits

e Attacker’s approach

O Craft and probe the cache
O Classify prompts that hit the same cache
O Use a language model to recover the cached prompt
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Prompt Stealing Example

User’s Prompt:

Conceptual art of a medieval knight with angel wings in a forest at
night, realistic painting, classical painting, high definition, digital
art, matte painting, very detailed, realistic ...

Stolen Prompt:

Medieval knight in the forest, highly detailed body, knight in armor
made of wood, elden ring inspired, photo-realistic painting, digital
art, matte painting, from a classical oil painting ...

Prompt semantic similarity: 0.85

33



Prompt Stealing Accuracy

Cache Hit Timing Only
=3 Timing and Content Similarity

e Model: Flux
e Dataset: DiffusionDB
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e Accuracy (semantic similarity): 0 06 08
o Cache timing only: 0.67 s
o Cache timing + content similarity: 0.75 Semantic Similarity

Attacker recovers prompt with high similarity
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Summary

e The wide use of cloud and Al introduces a wider attack surface

e \We demonstrate two cases of side-channel attacks
o Open vSwitch can leak user data due to its caching mechanism
o Prompt caching can allow attackers to steal user prompts and transmit
secret messages

e There is an urgent need for mitigating such leakages to ensure
trustworthy Al and cloud systems

e Our future direction aims to mitigate side-channel vulnerabilities
in cloud and Al applications

35



Side-Channel Vulnerabilities in
Networking and Al Systems

Sihang Liu

University of Waterloo

Oct 28, 2025
W UNIVERSITY OF
WATERLOO



	Slide 1: Side-Channel Vulnerabilities in Networking and AI Systems
	Slide 2: Explosion of Cloud and AI 
	Slide 3: New Security Concerns
	Slide 4: What Are Side-Channel Attacks​?
	Slide 5: Example of Cache Side Channel
	Slide 6: Outline
	Slide 7: Case Study I Side Channels in Open vSwitch
	Slide 8: Open vSwitch (OVS)
	Slide 9: Flow Caching in OVS
	Slide 10: Microflow Cache
	Slide 11: Microflow Cache Latency
	Slide 12: Megaflow Cache
	Slide 13: Megaflow Cache Latency
	Slide 14: Summary of OVS Attack Primitives
	Slide 15: Attack Model
	Slide 16: Remote Packet Header Recovery Attack
	Slide 17: Remote Packet Header Recovery Attack
	Slide 18: Recovery Accuracy and Time
	Slide 19: Remote Packet Rate Monitoring Attack
	Slide 20: Remote Packet Rate Monitoring Attack
	Slide 21: Recovery Accuracy
	Slide 22: Case Study II Side Channels in Prompt Cache
	Slide 23: Prompt Caching in Gen AI
	Slide 24: Caching for Text-to-Image Diffusion Models
	Slide 25: Timing of Cached Generation
	Slide 26: Similarity of Cached Generations
	Slide 27: Summary of Prompt Caching Attack Primitives
	Slide 28: Attack Model
	Slide 29: Remote Covert Channel
	Slide 30: Remote Covert Channel Examples
	Slide 31: Covert Channel Accuracy
	Slide 32: Prompt Stealing
	Slide 33: Prompt Stealing Example
	Slide 34: Prompt Stealing Accuracy
	Slide 35: Summary
	Slide 36: Side-Channel Vulnerabilities in Networking and AI Systems

