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Explosion of Cloud and AI 

● Cloud is foundational in today’s computing
○ Scalable compute and storage

○ Elastic resource allocation

● Networking is especially critical to the cloud
○ Achieve high-speed interconnect

● AI workloads are usually deployed in the cloud, e.g.,
○ Large language models for chatbot and code generation
○ Diffusion models for creative image/video generation
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New Security Concerns

● Sharing is common in cloud environments 

● Resource sharing introduces new security risks, e.g.,
○ Network interconnect
○ Generative AI models
○ Compute and storage systems

● Virtualization and isolation can mitigate leakages but not always
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What Are Side-Channel Attacks​?

● Side channels are based on indirect, unintended behaviors or features​

● Secretly leak information about the target system​

● Examples of side channels:
○ Chip power
○ Thermal signal​

○ Electromagnetic signal​
○ Timing difference​
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Cache is one of the most typical examples that lead to timing differences



Example of Cache Side Channel

Attacker primes 
a target set

No victim 
access

Victim 
accesses 

the set

Attacker 
probes 
the set

Attacker detects 
high latency

Attacker detects 
low latency
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A Prime+Probe attack can infer bits of a memory address through cache



Outline

● Background

● Side-channel Study I: Open vSwitch
○ Remote packet header recovery attack
○ Remote packet rate monitoring attack

● Side-channel Study II: Prompt caching of image generation
○ Remote covert channel
○ Prompt stealing attack
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Case Study I

Side Channels in Open vSwitch
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Open vSwitch (OVS)

● Cloud environments usually share resources via VMs

● OVS is one way to accelerate the network in cloud environment

○ It is a virtual switch that connects VMs or containers

○ Works with SDN and enables efficient and flexible network management

VM VM

OVS

VM VM

OVS

Cloud Server Cloud Server
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Flow Caching in OVS

Microflow Cache

Megaflow Cache

OpenFlow Tables

Miss Insert upon miss

Miss

Hit

Incoming 
Packet

Execute 
Actions

Hit Insert upon 
miss

● OVS caches network flows to accelerate flow actions

● It has a two-level cache: microflow cache and megaflow cache
○ The incoming packet first looks up microflow cache​
○ If hit, execute actions
○ If miss, look up megaflow cache and insert flow back to microflow 
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Microflow Cache
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● Microflow cache is based on a 

hash table

● Lookup process:
1. Generate hash from packet header
2. Look up the microflow cache using 

the hash value
○ Hit: Use the cached flow entry
○ Miss: Replace the conflict entry

Hash function

Hash value

Microflow 

Cache

Look up / 
Replace if miss

Src IP Dst IP Src port Dst port Protocol



Microflow Cache Latency
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OVS microflow and megaflow have distinguishable latencies
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Megaflow Cache
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● Megaflow cache consists of a number of subtables
○ Look up subtables sequentially until hit

○ Latency depends on num. subtable lookups
○ Subtables are reordered to the front if accessed frequently

Subtable 

1

Subtable 

2

Subtable 

N…Packet

Execute Action

Miss Hit Skipped

Subtable 
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Miss

Reorder



Megaflow Cache Latency
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● Evaluate access latency vs. subtable location

Megaflow has distinguishable levels of latencies, corresponding to subtables order

Subtable Num.

300

290

280

270

260
1 2    5     8           14              21                   31



Summary of OVS Attack Primitives

1.Timing difference in OVS

○ Microflow, megaflow, and cache miss have distinguishable latencies

2.Microflow cache hash collisions

○ The hash for the microflow cache is generated from packet header fields

○ Collisions can leak information about packet header fields

3.Megaflow subtable ordering

○ The megaflow subtable ordering is based on access frequency

○ Subtable latency can leak traffic rate
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Attack Model

● Assume a cloud environment
○ Attacker and victim have no direct co-location

○ Attacker may access services co-located with the victim’s server,
but are isolated by VMs

● Only OVS is shared

VM VM

OVS

ServiceAttacker Victim

VM Isolation

Remote Access Shared OVS
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Remote Packet Header Recovery Attack

VM VM

OVS

Microflow

ServiceAttacker Victim

● Attacker knows victim is accessing some well-known service
○ Victim’s Dst IP, port, and protocol are known

● Infer victim’s remaining header fields
○ Victim’s Src IP and port are targets

● Use Attack Primitives 1 & 2 to detect microflow collisions

Known
Service
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Known dst IP, port, 
and protocolInfer src IP and port



Remote Packet Header Recovery Attack

User 
accessing 
network

Probe microflow to 
detect evictions

Compute all hash 
combinations of 
Src IP and port

Find possible 
combinations that 
match evictions

Src IP Dst IP Src port Dst port Protocol

Eviction hash Computed Hash
?
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Recovery Accuracy and Time

● Measurement repetition increases recovery accuracy

● Probing time increases as attacker repeats probing
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Attack Time Accuracy
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Packet header fields can be recovered by probing active entries in microflow cache



Remote Packet Rate Monitoring Attack

● Attacker has knowledge about victim’s packet header
○ Using packet header recovery attack

● Attacker can locate victim flow’s subtable and probe it

● Use Attack Primitive 3 to monitor victim’s packet rate
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Remote Packet Rate Monitoring Attack

Subtable 

1

Subtable 

2

Subtable 

3

10 packets/s 8 packets/s

Subtable 

5

6 packets/s

● Attacker measures latency to victim’s co-located subtable

● Attacker accesses certain subtables that work as “thresholds”
○ Send packets at fixed rates
○ Compare the victim’s subtable latency and determine the relative ordering

● Use neighboring thresholds to identify victim’s packet rate

Lower latency Higher latency
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Recovery Accuracy

● Replay packets based on timestamps in UNSW-NB15

● Recovery of an example flow:
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Attacker can monitor packet rate at 71.9% accuracy on average

Groundtruth Success (75%) Fail (25%)
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Case Study II

Side Channels in Prompt Cache
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Prompt Caching in Gen AI

● Gen AI models cache prompts for faster generation

● Examples of prompt caching:
○ Large Language Models can skip computation of identical 

components in the prompt by reusing the cache
○ Text-to-Image Diffusion Models reuse the intermediate states of 

cached prompts for similar prompts

This study focuses on caching in Text-to-Image Diffusion Models
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Caching for Text-to-Image Diffusion Models

1 N2

Gaussian Noise

N20

Cache

Cache Hit

Reuse Cached State
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A photorealistic detailed 

squirrel stealing…

Prompt 1

Anthropomorphic acorn 

criminal, sitting in a tree…

Prompt 2

20 steps skipped 24



Timing of Cached Generation

Miss Steps skipped 10%
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● Model: FLUX

● Platform: H100 GPU

● Evaluate generation time with 

different numbers of skipped steps
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Caching reduces generation time, varying by the number of skipped steps



Similarity of Cached Generations
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1. Timing Differences
○ A cache hit results in a significantly lower generation latency 

○ An attacker can remotely determine if their prompt hit the cache 

2. Generation Similarity
○ Images generated from the same cache share high similarities

○ An attacker can analyze the output image to determine if their prompts hit 
the same cache

Summary of Prompt Caching Attack Primitives
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Attack Model

Attacker

Prompt 

● The image generation service is hosted remotely in the cloud
○ It uses caching for acceleration

● Attackers can only access it remotely through generation prompts

Cache

Diffusion 

Model

Remote
Image Generation Service
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Remote Covert Channel

Sender Receiver

PromptsPrompts

Cache

Diffusion 

Model

● A sender and a receiver communicate stealthily through the cache 

● Approach
○ Sender: Inserts prompts with special words into the cache
○ Receiver: Probes the cache and checks if special words exist

Special 

keywords

Special 

keywords

Check Output
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Remote Covert Channel Examples

Apricity Cacodemon Caltrop Crwth Fleam Gnomon

Keyword 

Hit

Initial 

Keyword

Keywords
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Receiver uses an objective detection model to check the output

Sender’s prompts remain 

cached for ~2 days



Covert Channel Accuracy

●Model: Flux

●Dataset: DiffusionDB

●Baseline: Using cache timing to detect 

if the sender has injected a keyword

●Accuracy:
○ Cache timing only: 95%

○ Cache timing + content similarity: 98% 
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Using both timing and content similarity attack primitives achieves 
high covert channel accuracy



Prompt Stealing

● Infer user prompts in the cache through cache hits

● Attacker’s approach 
○ Craft and probe the cache
○ Classify prompts that hit the same cache
○ Use a language model to recover the cached prompt

Probing Outputs Stolen Prompt

AttackerProbing Prompts

Cache

Diffusion 

Model
User

Prompt
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Prompt Stealing Example

Medieval knight in the forest, highly detailed body, knight in armor 
made of wood, elden ring inspired, photo-realistic painting, digital 
art, matte painting, from a classical oil painting … 

Conceptual art of a medieval knight with angel wings in a forest at 
night, realistic painting, classical painting, high definition, digital 
art, matte painting, very detailed, realistic …

User’s Prompt:

Prompt semantic similarity: 0.85

Stolen Prompt:
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Prompt Stealing Accuracy

● Model: Flux

● Dataset: DiffusionDB

● Baseline: Using timing to determine 

hits, without classifying if prompts hit 

the same cache

● Accuracy (semantic similarity):
○ Cache timing only: 0.67

○ Cache timing + content similarity: 0.75
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Summary

● The wide use of cloud and AI introduces a wider attack surface

● We demonstrate two cases of side-channel attacks
○ Open vSwitch can leak user data due to its caching mechanism
○ Prompt caching can allow attackers to steal user prompts and transmit 

secret messages

● There is an urgent need for mitigating such leakages to ensure 

trustworthy AI and cloud systems

● Our future direction aims to mitigate side-channel vulnerabilities 

in cloud and AI applications
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